1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
| import torch import torch.nn as nn import torch.nn.functional as F
from typing import Optional, Tuple, Type
from .common import LayerNorm2d, MLPBlock
class ImageEncoderViT(nn.Module): def __init__( self, img_size: int = 1024, patch_size: int = 16, in_chans: int = 3, embed_dim: int = 768, depth: int = 12, num_heads: int = 12, mlp_ratio: float = 4.0, out_chans: int = 256, qkv_bias: bool = True, norm_layer: Type[nn.Module] = nn.LayerNorm, act_layer: Type[nn.Module] = nn.GELU, use_abs_pos: bool = True, use_rel_pos: bool = False, rel_pos_zero_init: bool = True, window_size: int = 0, global_attn_indexes: Tuple[int, ...] = (), ) -> None: """ img_size(int):输入图像大小。 patch_size(int):步长大小。 in_chans(int):输入图像通道的数量。 embed_dim(int):补丁嵌入维度。 depth(int):ViT的深度。 num_heads(int):每个ViT块中的注意力头的数量。 mlp_ratio(float):mlp隐藏dim与嵌入dim的比率。 qkv_bias(bool):如果为True,则为查询、键、值添加可学习的偏差。 norm_layer(nn.Module):规范化层。 act_layer(nn.Module):激活层。 use_abs_pos(bool):如果为True,则使用绝对位置嵌入。 use_rel_pos(bool):如果为True,则将相对位置嵌入添加到注意力映射中。 rel_pos_zero_init(bool):如果为True,zero初始化相对位置参数。 window_size(int):窗口注意力块的窗口大小。 global_attn_indexes(list):使用全局注意力的块的索引。 """ super().__init__() self.img_size = img_size
self.patch_embed = PatchEmbed( kernel_size=(patch_size, patch_size), stride=(patch_size, patch_size), in_chans=in_chans, embed_dim=embed_dim, )
self.pos_embed: Optional[nn.Parameter] = None if use_abs_pos: self.pos_embed = nn.Parameter( torch.zeros(1, img_size // patch_size, img_size // patch_size, embed_dim) )
self.blocks = nn.ModuleList() for i in range(depth): block = Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, norm_layer=norm_layer, act_layer=act_layer, use_rel_pos=use_rel_pos, rel_pos_zero_init=rel_pos_zero_init, window_size=window_size if i not in global_attn_indexes else 0, input_size=(img_size // patch_size, img_size // patch_size), ) self.blocks.append(block)
self.neck = nn.Sequential( nn.Conv2d( embed_dim, out_chans, kernel_size=1, bias=False, ), LayerNorm2d(out_chans), nn.Conv2d( out_chans, out_chans, kernel_size=3, padding=1, bias=False, ), LayerNorm2d(out_chans), )
def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.patch_embed(x) if self.pos_embed is not None: x = x + self.pos_embed
for blk in self.blocks: x = blk(x)
x = self.neck(x.permute(0, 3, 1, 2))
return x
class Block(nn.Module): """支持窗口注意力和残差传播块的Transformer""" """ 窗口注意力就是一种掩码 """
def __init__( self, dim: int, num_heads: int, mlp_ratio: float = 4.0, qkv_bias: bool = True, norm_layer: Type[nn.Module] = nn.LayerNorm, act_layer: Type[nn.Module] = nn.GELU, use_rel_pos: bool = False, rel_pos_zero_init: bool = True, window_size: int = 0, input_size: Optional[Tuple[int, int]] = None, ) -> None: """ dim(int):输入通道的数量。 num_heads(int):每个ViT块中的注意力头的数量。 mlp_ratio(float):mlp隐藏dim与嵌入dim的比率。 qkv_bias(bool):如果为True,则为K,Q,V添加可学习的偏差。 norm_layer(nn.Module):规范化层。 act_layer(nn.Module):激活层。 use_rel_pos(bool):如果为True,则将相对位置嵌入添加到注意力映射中。 rel_pos_zero_init(bool):如果为True,zero初始化相对位置参数。 window_size(int):窗口注意力块的窗口大小。如果它等于0,那么利用全球关注。 input_size(int或None):用于计算相对位置的输入分辨率参数大小 """ super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, use_rel_pos=use_rel_pos, rel_pos_zero_init=rel_pos_zero_init, input_size=input_size if window_size == 0 else (window_size, window_size), )
self.norm2 = norm_layer(dim) self.mlp = MLPBlock(embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer)
self.window_size = window_size
def forward(self, x: torch.Tensor) -> torch.Tensor: shortcut = x x = self.norm1(x) if self.window_size > 0: H, W = x.shape[1], x.shape[2] x, pad_hw = window_partition(x, self.window_size)
x = self.attn(x) if self.window_size > 0: x = window_unpartition(x, self.window_size, pad_hw, (H, W))
x = shortcut + x x = x + self.mlp(self.norm2(x))
return x
class Attention(nn.Module): """这是多头注意力"""
def __init__( self, dim: int, num_heads: int = 8, qkv_bias: bool = True, use_rel_pos: bool = False, rel_pos_zero_init: bool = True, input_size: Optional[Tuple[int, int]] = None, ) -> None: super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = head_dim**-0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.proj = nn.Linear(dim, dim)
self.use_rel_pos = use_rel_pos if self.use_rel_pos: assert ( input_size is not None ), self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim)) self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
def forward(self, x: torch.Tensor) -> torch.Tensor: B, H, W, _ = x.shape qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)
attn = (q * self.scale) @ k.transpose(-2, -1)
if self.use_rel_pos: attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W))
attn = attn.softmax(dim=-1) x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1) x = self.proj(x)
return x
def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]: """ 堆叠不重复的窗口,一种不同于padding的方式。 """ B, H, W, C = x.shape
pad_h = (window_size - H % window_size) % window_size pad_w = (window_size - W % window_size) % window_size if pad_h > 0 or pad_w > 0: x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h)) Hp, Wp = H + pad_h, W + pad_w
x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C) windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) return windows, (Hp, Wp)
def window_unpartition( windows: torch.Tensor, window_size: int, pad_hw: Tuple[int, int], hw: Tuple[int, int] ) -> torch.Tensor: """ Window unpartition into original sequences and removing padding. Args: x (tensor): input tokens with [B * num_windows, window_size, window_size, C]. window_size (int): window size. pad_hw (Tuple): padded height and width (Hp, Wp). hw (Tuple): original height and width (H, W) before padding.
Returns: x: unpartitioned sequences with [B, H, W, C]. """ Hp, Wp = pad_hw H, W = hw B = windows.shape[0] // (Hp * Wp // window_size // window_size) x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1) x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
if Hp > H or Wp > W: x = x[:, :H, :W, :].contiguous() return x
def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor: """ Get relative positional embeddings according to the relative positions of query and key sizes. Args: q_size (int): size of query q. k_size (int): size of key k. rel_pos (Tensor): relative position embeddings (L, C).
Returns: Extracted positional embeddings according to relative positions. """ max_rel_dist = int(2 * max(q_size, k_size) - 1) if rel_pos.shape[0] != max_rel_dist: rel_pos_resized = F.interpolate( rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1), size=max_rel_dist, mode="linear", ) rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0) else: rel_pos_resized = rel_pos
q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0) k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0) relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
return rel_pos_resized[relative_coords.long()]
def add_decomposed_rel_pos( attn: torch.Tensor, q: torch.Tensor, rel_pos_h: torch.Tensor, rel_pos_w: torch.Tensor, q_size: Tuple[int, int], k_size: Tuple[int, int], ) -> torch.Tensor: """ Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`. https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py # noqa B950 Args: attn (Tensor): attention map. q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C). rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis. rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis. q_size (Tuple): spatial sequence size of query q with (q_h, q_w). k_size (Tuple): spatial sequence size of key k with (k_h, k_w).
Returns: attn (Tensor): attention map with added relative positional embeddings. """ q_h, q_w = q_size k_h, k_w = k_size Rh = get_rel_pos(q_h, k_h, rel_pos_h) Rw = get_rel_pos(q_w, k_w, rel_pos_w)
B, _, dim = q.shape r_q = q.reshape(B, q_h, q_w, dim) rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh) rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)
attn = ( attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :] ).view(B, q_h * q_w, k_h * k_w)
return attn
class PatchEmbed(nn.Module): """ Image to Patch Embedding. """
def __init__( self, kernel_size: Tuple[int, int] = (16, 16), stride: Tuple[int, int] = (16, 16), padding: Tuple[int, int] = (0, 0), in_chans: int = 3, embed_dim: int = 768, ) -> None: """ Args: kernel_size (Tuple): kernel size of the projection layer. stride (Tuple): stride of the projection layer. padding (Tuple): padding size of the projection layer. in_chans (int): Number of input image channels. embed_dim (int): embed_dim (int): Patch embedding dimension. """ super().__init__()
self.proj = nn.Conv2d( in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding )
def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.proj(x) x = x.permute(0, 2, 3, 1) return x
|